Reverse-Convex Programming for Sparse Image Codes

نویسندگان

  • Matthias Heiler
  • Christoph Schnörr
چکیده

Reverse-convex programming (RCP) concerns global optimization of a specific class of non-convex optimization problems. We show that a recently proposed model for sparse non-negative matrix factorization (NMF) belongs to this class. Based on this result, we design two algorithms for sparse NMF that solve sequences of convex secondorder cone programs (SOCP). We work out some well-defined modifications of NMF that leave the original model invariant from the optimization viewpoint. They considerably generalize the sparse NMF setting to account for uncertainty in sparseness, for supervised learning, and, by dropping the non-negativity constraint, for sparsity-controlled PCA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy vs. L1 Convex Optimization in Sparse Coding: Comparative Study in Abnormal Event Detection

Sparse representation has been applied successfully in many image analysis applications, including abnormal event detection, in which a baseline is to learn a dictionary from the training data and detect anomalies from its sparse codes. During this procedure, sparse codes which can be achieved through finding the L0-norm solution of the problem: min ‖Y −Dα‖2 +‖α‖0, is crucial. Note that D refer...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

Sparse Template-Based variational Image Segmentation

We introduce a variational approach to image segmentation based on sparse coverings of image domains by shape templates. The objective function combines a data term that achieves robustness by tolerating overlapping templates with a regularizer enforcing sparsity. A suitable convex relaxation leads to the variational approach that is amenable to large-scale convex programming. Our approach take...

متن کامل

PENNON: A code for convex nonlinear and semidefinite programming

We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in PENNON and detai...

متن کامل

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005